Enumerating projective reflection groups

نویسندگان

  • Riccardo Biagioli
  • Fabrizio Caselli
چکیده

Projective reflection groups have been recently defined by the second author. They include a special class of groups denoted G(r, p, s, n) which contains all classical Weyl groups and more generally all the complex reflection groups of type G(r, p, n). In this paper we define some statistics analogous to descent number and major index over the projective reflection groups G(r, p, s, n), and we compute several generating functions concerning these parameters. Some aspects of the representation theory of G(r, p, s, n), as distribution of one-dimensional characters and computation of Hilbert series of some invariant algebras, are also treated. Résumé. Les groupes de réflexions projectifs ont été récemment définis par le deuxième auteur. Ils comprennent une classe spéciale de groupes notée G(r, p, s, n), qui contient tous les groupes de Weyl classiques et plus généralement tous les groupes de réflexions complexes du type G(r, p, n). Dans ce papier on définit des statistiques analogues au nombre de descentes et à l’indice majeur pour les groupes G(r, p, s, n), et on calcule plusieurs fonctions génératrices. Certains aspects de la théorie des représentations de G(r, p, s, n), comme la distribution des caractères linéaires et le calcul de la série de Hilbert de quelques algèbres d’invariants, sont aussi abordés.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 90 2 . 06 84 v 1 [ m at h . C O ] 4 F eb 2 00 9 PROJECTIVE REFLECTION GROUPS

We introduce the class of projective reflection groups which includes all complex reflection groups. We show that several aspects involving the combinatorics and the representation theory of all non exceptional irreducible complex reflection groups find a natural description in this wider setting.

متن کامل

Combinatorial invariant theory of projective reflection groups

We introduce the class of projective reflection groups which includes all complex reflection groups. We show that several aspects involving the combinatorics and the representation theory of complex reflection groups find a natural description in this wider setting. Résumé. On introduit la classe des groupes de réflexions projectifs, ce qui généralises la notion de groupe engendré par des réfle...

متن کامل

The Deformation Theory of Discrete Reflection Groups and Projective Structures

We study deformations of discrete groups generated by linear reflections and associated geometric structures on orbifolds via cohomology of Coxeter groups with coefficients in the adjoint representation associated to a discrete representation. We completely describe a cochain complex that computes this cohomology for an arbitrary discrete reflection group and, as a consequence of this descripti...

متن کامل

Counting rational curves of arbitrary shape in projective spaces

We present an approach to a large class of enumerative problems concerning rational curves in projective spaces. This approach uses analysis to obtain topological information about moduli spaces of stable maps. We demonstrate it by enumerating one-component rational curves with a triple point or a tacnodal point in the three-dimensional projective space and with a cusp in any projective space. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011